
So now let us go to question number 11 which is really a very interesting question. Here we want

to show the following that you take any sequence of " + 1 distinct real numbers. They are

arbitrary real numbers; may be positive, negative in any order you take them. The only condition

is that they have to be distinct. Then the claim is that irrespective of the " + 1 real numbers that

you have in your sequence you always have a subsequence of length  + 1 which is either strictly

increasing or strictly decreasing.

First of all what what is a strictly increasing sequence? A sequence of the form (!,", … ) where

! < " < # < ⋯ < ).! < ) … . Whereas if I have a sequence of the form (!,",#, … )

where ! > " > #… > ).! > ) > ⋯ then it is a strictly decreasing sequence.

Now what does a subsequence means? A subsequence mean here that the values may not be

consecutive. That means I am allowed to miss few numbers. In the sense, say I take a sequence 1,

3, 0, -5, 2, 8 and so on. Then I can choose to pick 1 and then exclude 3 and 0 and -5. This is a

subsequence. In the same way I can pick a subsequence saying 3, 2 and 8 that means I skip 0, I

skip -5.

So what this question basically says is that irrespective of the way your " + 1 distinct real

numbers are chosen you always have a subsequence. By that I mean that you have a set of  + 1

values going from left to right but need not be in consecutive locations; some of the locations
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might be skipped. But the number of values are  + 1 such that if you view those  + 1 values

they are either strictly increasing or strictly decreasing. That is what we have to prove.

Again, if you want to convince yourself whether this is indeed a true statement or not you can take

some concrete values of , try to draw any possible sequence of " + 1 for that value of  and you

can verify that this statement is true. But now we want to prove it for any arbitrary sequence. How

do we do that? So let the arbitrary sequence of " + 1 distinct real numbers be denoted by ! to

-"'!.

Why I am taking arbitrary here? Because I want to prove this statement for every sequence. So

this is a universally quantified statement and to prove a universally quantified statement I can use

the universal generalization principle by proving that a statement is true for some arbitrary element

of the domain. My domain here is the set of all possible sequences of " + 1 distinct real numbers.

I am just taking one candidate element from that domain arbitrarily.

I do not know the exact values of ! …* …-"'!. What I will do is to prove this statement, I will

use pigeonhole principle along with proof by contradiction. So let me first define two values. I

define ) as the length of the longest increasing subsequence starting at ). So a_i will have some

value depending upon what is the arbitrary sequence and it will have some various possible

increasing subsequences starting at ).

One might be of length 1, a trivial increasing subsequence starting at ) is the value) itself. That

is a subsequence of length 1. But I might be having a subsequence of say length 2 which is strictly

increasing and starting at ). I might have a subsequence of length 3 starting at ) and so on. So

whatever is the length of the longest increasing subsequences starting at ), I am denoting by ).

In the same way, I define ) as the length of the longest decreasing subsequence starting at ). I

might have several strictly decreasing sequences starting at ). In fact the sequence ) itself is a

subsequence of length 1 which is strictly decreasing. But I might be having a subsequence of higher

length which is strictly decreasing and starting at ). So the length of the longest decreasing

subsequence starting at ) I am denoting it as ). So that means with !, I have associated the

values ! and !. With ", I would have associated the value" and ".
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And similarly with ), I would have associated the value ) and ), with * I would have associated

the value * and *; and with -"'! I would have associated the value -"'! and -"'!. It is easy

to see that -"'! will be 1, -"'! is 1. Because I have only one sub sequence starting at -"'!

namely the value -"'! itself.

It is both an increasing subsequence starting at -"'! as well as it is a decreasing subsequence

starting at -"'! because there is nothing after the number -"'!. Now, what is my goal? The

question basically asks me to show that there always exist some  or some value ) such that there

either exists an increasing subsequence of length  + 1 that means ) is greater than equal to  +

1 or there is a decreasing subsequence of length  + 1. That means ) is  + 1.

I have to show the existence of one such number ) in this subsequence. I prove that by assuming

a contradiction. So assume that the statement is false and that means for each ) in the sequence,

the value )is at most . That means you take any number in the sequence the maximum length

increasing subsequence of length  and the maximum length decreasing subsequence is also of

length .

What does that mean? That means if I try to pair all ) and ) pairs then they can take the values

in the range (1,1) to (,) namely " possible pairs. These are the possible values of () ,)) pairs.

But how many numbers I have in the sequence? I have " + 1 values in the sequence that I have

chosen. That means I have more pigeons and less holes. What does that mean? So by PHP here I

mean pigeonhole principle.

So pigeonhole principle guarantees me that you definitely have a pair of values here say ) and *.

Such that your ) and * are same. That means the length of the longest increasing subsequence

starting at ) is the same as the length of the longest increasing subsequence starting at *. And in

the same way the length of the longest decreasing subsequence starting at ) is same as the length

of the longest decreasing subsequence starting at *.
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And as per my assumption ) , * ,) ,* are all upper bounded by  because I assume the

contradiction. Now how do I arrive at a contradiction here? So there could be two possible cases

with respect to the magnitude of ) and *.

The first case ) < *. If that is the case, then what I can say is the following. I can say that you

take the increasing subsequence starting at *; what is its length? Its length is * and if I put the

value of ) at the beginning of that subsequence then that gives me now a new increasing

subsequence starting at ) and of length )'!. But that goes against the assumption that the length

of the longest subsequence starting at ) was). So that is how I arrive at a contradiction.

On the other hand if I take the case when ) > * then I have to just give a symmetric argument.

What I can say is the following. I know that there is a decreasing subsequence starting at * and

its length is *. My claim is if you take that subsequence and put an ) at the beginning then that

now give me a new decreasing subsequence starting at ) and the length of this new decreasing

subsequence is _{ + 1}.

Which now goes against the assumption that the length of the longest decreasing subsequence

starting at ) was ). That means in both the cases I arrived at a contradiction and that shows that

whatever I assumed here that means the value of each ) and each ) was upper bounded by  is

incorrect. That means there is at least one )where either ) is greater than  or ) is greater than

. I do not know what exactly is that ). So I gave you a non-constructive proof here. But I argued

that the existence of such ) is guaranteed.

(Refer Slide Time: 28:47)
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Now let us go to question 12. In this question we want to show the following you are arbitrarily

picking 9 people in the age group of 18 to 58. That means the minimum age it is allowed is 18 the

maximum age is allowed 58. Now we want to prove that irrespective of what exactly are their

ages, as long as they are in the range 18 to 58 it is always possible to choose 2 disjoint groups of

people out of this 9 people whose sum of ages is the same.

Again, we will do this by pigeonhole principle. So the first thing is since we want to argue about

a non-empty set of people because when I want to consider the age of the people there have to be

people in the group. So I have to focus on non-empty subset. So if I have 9 people then the number

of non-empty groups that I can form out of those 9 people need not be disjoint is 511. And now

what I can say about the range of the sum of ages in these 511 subsets.

If I consider the minimum sum of ages possible in a group it could be 18. This is possible only

when I have a group of just consisting of one person and that person has age 18. That is a minimum

possible sum. Whereas the maximum possible sum can occur when in my group I have all the 9

people person 1, person 2 and up to person 9 and each of them has age 58.

That is a maximum possible value of sum of the ages in a group we picked from 9 people. That

means the range of possible sums here is 505. So now let us apply the pigeonhole principle. My

pigeons are the various possible non-empty set of people that I can form out of this 9 group of 9

people. So I have 511 possible subsets and my holes are the range of sum of ages. That means
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what can be the sum of ages if I consider the various possible subsets given that the ages could be

in the range 18 to 58.

So I have more pigeons than holes so by pigeonhole principle I can say that they always exists a

pair of group ) and * such that the sum of ages of the people in ) and * are the same. But my

question wants me to show that the group should be disjoint. So how do I argue that? I can always

form disjoint groups of people out of this ) and *. Well if they are already disjoint then I have

showed the existence of 2 groups having the same sum of ages.

But if the sets ) and * are not same; if they have some common people just remove the common

people from both the set ) and as well as *. The common people in the set ) and * were

contributing the same amount to the sum of ages in the set ) as well as in the set *. So if I remove

those common people the same amount will be removed from the sum of ages in ) and *. And

now where I will get 2 disjoint groups of people having the same sum of ages.

(Refer Slide Time: 32:29)

In question 13 you are given the set of  consisting of the numbers 1 to 2 and we want to show

that if I pick an arbitrary subset  consisting of  + 1 elements from the set A and irrespective of

the subset there always exist a pair of values such that one divides the other. And this is again a

very interesting question. So for applying the pigeonhole principle what I do is I divide this set 
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into 2 disjoint subsets namely the subset consisting of the odd values and the subset consisting of

the even values.

Both of them will have the cardinality . Now my claim is the following: you take any value in

the set , it has a unique factorization of the form that you have some power of 2 multiplied by the

remaining value where the remaining value will be a number, specifically an odd number in the

subset 1 to 2 − 1. For example, if your number  that you are taking in the set  is already an

odd number then I can write it in the form 2/ ∗ .

So in this case my a will be 0 and my  will be  itself. So my statement is true. Whereas if your

 would have been say 6 then 6 can be written as 2 into 3. So you have 2! times an odd value. If

your  is say 10 then you can write it as 2 1 ∗ 5. If your  is say 20, then you can write it as 2" ∗

5. So you can see that irrespective of the case, whether your  is odd or even, this claim is always

true.

So for  being odd this statement is always true. But the statement is true even for a general 

which is even because for such  where  is either 2, 4, or 2; I can express it in the form 2 power

sum positive exponent ! followed by the remaining values. And this is because of the fundamental

theorem of arithmetic that every integer has a unique prime factorization. The claim is that if I

consider the remaining prime factorization here then that will be an odd value.

And that odd value will be in the set  here and it is easy to verify that. So that means this claim

is true. Now based on this claim I have to apply the pigeonhole principle. For applying the

pigeonhole principle I do the following. Let  be the arbitrary set of  + 1 values that I have

chosen. And I mapped those arbitrary chosen values to the leftover value in its unique factorization

that this claimed guarantees.

So ! will be written in the form of some 2+! ∗ . So ! will be mapped to this !; " will be

written in the form of some 2+" into leftover thing. That left over thing is an odd number in the set

. So a_2 will be mapped to " and so on. That is a mapping  here. Now what is the cardinality

of set ? That is ; that means my number of holes is . But the number of pigeons is  + 1. That
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means by pigeonhole principle it is guaranteed that there exists a pair of values ) and * out of

this n+1 values.

Where ) is sum 2+# into some left over thing which is an odd value. And * is some 2
+$ multiplied

by the same leftover value. I do not know the exact value of that left over odd value . But that

left over odd value  will be the same; that is a guarantee. And exponents ) ≠ * because I am

considering the distinct vales ) and *. But what is guaranteed is that the leftover odd value here

that is there as per this unique factorization claim will be the same. Now I have 2 possible cases if

) is greater than * then clearly * divides ) because if I divide * by ) then the effect of  goes

out and the exponent ) is greater than exponent *. So, whatever is leftover that will be the quotient

and the remainder will be 0.

Whereas if * is greater than ) then again the effect of  vanishes and 2
+$/2+# that will give you

0 remember. So irrespective of the case my statement is correct.

(Refer Slide Time: 38:17)

Now let us go the last question. Here we want to find out how many solutions are there for the

equation ! +⋯0 = 29 where there are various possible restrictions on ). So in part a, we have

the restriction that each ) has to be greater than 1. So you can imagine that you are given here

bills of type !, bills of type " and bills of type 0. We have to pick total 29 bills with the

restriction that you have to definitely pick more than one bill of each type.
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That is the interpretation of this first restriction. That means I have to compulsorily pick 2 items

of type !, "… 0. That means I had already picked 12 items compulsorily. That means now I am

left over with the problem of picking 17 bills in total, out of this 6 different bill types where there

are no restrictions. And remember as per the formula for the number of combinations with

repetitions the answer is (6− 1 + 17,17) = (22,17).

In part b, the restriction is ) ≥ . Again, if I interpret this restriction that means I have to definitely

include one bill of type !, 2 bills of type ", 3 bills of type #, 4 pills of type $, 5 bills of type

% and 6 bills of 0. That means I have already picked 22 bills of various types. That means now

my goal was to pick 29 bills; 22 definitely I have already picked. So, I am left over with the

problem of picking 7 bills where those 7 bills can be of type !, " to 0 in any possible order, no

restrictions. So again, from the formula for number of r-combinations with repetition the answer

will be (6− 1 + 7,7) = (12,7).

In part c, the restriction is that _1 \ 5. So, what we do here is the following. We first find out

the number of solutions where there is no restriction. That means _1 maybe 0 as well; those

solutions are also included in this quantity. And now I try to find out those solutions where this

condition namely _1 less than equal to 5 is violated. That means find the number of solutions

where _1 is greater than equal to 6.

That means definitely I have to pick 6 bills of type _1 which further implies that now I am

interested to pick the remaining 23 bills without putting any restriction that how many bills of

different types I have to choose. The number of solutions for this case will be this. But this is not

what we want. We want to find out the number of solutions which do not have this condition. So

what I do? I subtract this value from the set of or from the number of solutions that I have without

any restrictions and that will give me the answer.

(Refer Slide Time: 41:41)
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The last part here, my restrictions are _1 < 8 and _2 > 8. Let us first try to find out the number

of solutions where _2 \ 9. That means just try to satisfy the second restriction here. The

number of solutions will be this because if _2 is greater than equal to 9 that means 9 bills of type

_2 definitely have to be chosen. That means now I am left with the problem of picking 20 bills

from bills of 6 types without any restrictions.

And now let us try to find out the number of solutions where this first restriction is violated, namely

_1 is greater than equal to 8 and _2 is greater than equal to 9. So, what basically I am trying to

do is the set  that I have defined here it has all those solutions where _1 is less than 8 as well as

_1 is greater than 8. So, I am trying to take out those solutions where _1 is greater than equal to

8 from this set A. I am denoting that set as B and the cardinality of the set B is this because if I am

supposed to satisfy _1 greater than equal to 8 and _2 greater than equal to 9 that means I have

already picked 17 bills. My goal will be now to pick 12 more bills from bills of 6 types without

any restrictions. This will be the number of ways the number of solutions. And as I have said from

the interpretation of the set  and  the required number of solutions is the difference of these 2

cardinalities which we can easily find out. So with that we finish our tutorial number 6. Thank

you.
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